Referring Segmentation

Mengxue

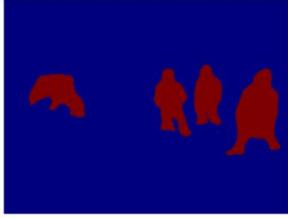
Segmentation from Natural Language Expressions

ECCV 2016

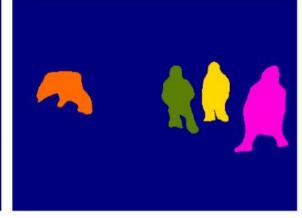
Ronghang Hu¹ Marcus Rohrbach^{1,2} Trevor Darrell¹ {ronghang, rohrbach, trevor}@eecs.berkeley.edu

> ¹UC Berkeley EECS, CA, United States ²ICSI, Berkeley, CA, United States

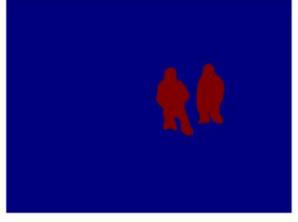
(a) input image



(b) object class segmentation of class people



(c) object instance segmentation of class *people*



(d) segmentation from expression "people in blue coat"

- Dataset
- Paper Sharing

Paper List:

Segmentation from Natural Language Expressions

Recurrent Multimodal Interaction for Referring Image Segmentation

MAttNet: Modular Attention Network for Referring Expression Comprehension

Referring Expression Object Segmentation with Caption-Aware Consistency

PhraseCut: Language-Based Image Segmentation in the Wild

Contents

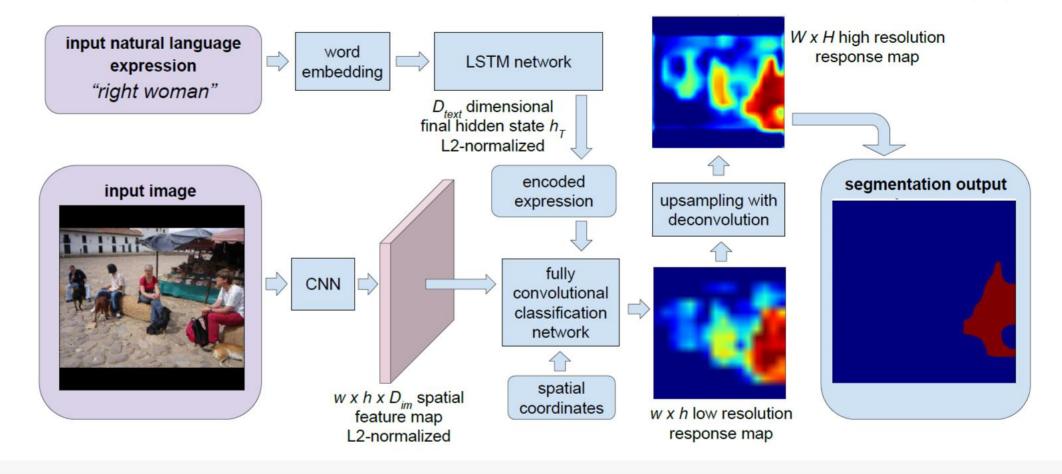
Figure 2. Example annotations from the VGPHRASECUT dataset. Colors (blue, red, green) of the input phrases correspond to words that indicate attributes, categories, and relationships respectively.

Dataset	ReferIt [17]	Google RefExp [26]	RefCOCO [41]	VGPHRASECUT
# images	19,894	26,711	19,994	77,262
# instances	96,654	54,822	50,000	345,486
# categories	-	80	80	3103
multi-instance	No	No	No	Yes
segmentation	Yes	Yes	Yes	Yes
referring phrase	short phrases	long descriptions	short phrases	templated phrases

Segmentation from Natural Language Expressions

ECCV 2016

Ronghang Hu¹ Marcus Rohrbach^{1,2} Trevor Darrell¹ {ronghang, rohrbach, trevor}@eecs.berkeley.edu



Word embedding

我们导入在维基百科上训练的GloVe向量

```
import gensim
import gensim.downloader as api
model = api.load('glove-wiki-gigaword-50')
```

单词"king"的词嵌入表示:

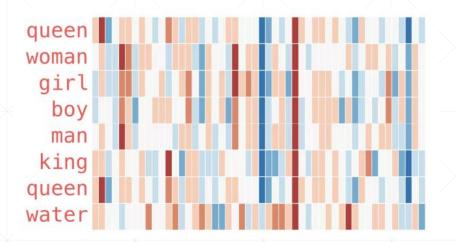
```
model["king"]
```

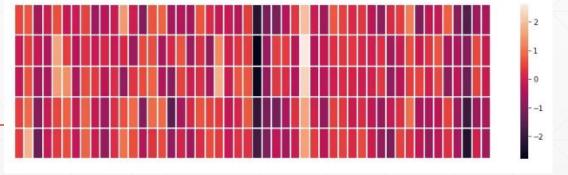
```
array([ 0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 , -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 , -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 , 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 , 0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 , -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 , 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 , 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 , 0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 , 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042 ], dtype=float32)
```

查看"king"最相似的单词

```
model.most_similar("king")
```

```
[('prince', 0.8236179351806641),
  ('queen', 0.7839042544364929),
  ('ii', 0.7746230363845825),
  ('emperor', 0.7736247181892395),
  ('son', 0.766719400882721),
  ('uncle', 0.7627150416374207),
  ('kingdom', 0.7542160749435425),
  ('throne', 0.7539913654327393),
  ('brother', 0.7492411136627197),
  ('ruler', 0.7434253096580505)]
```





Loss

$$Loss = \frac{1}{WH} \sum_{i=1}^{W} \sum_{j=1}^{H} L(v_{ij}, M_{ij})$$

$$L(v_{ij}, M_{ij}) = \begin{cases} \alpha_f \log(1 + \exp(-v_{ij})) & \text{if } M_{ij} = 1\\ \alpha_b \log(1 + \exp(v_{ij})) & \text{if } M_{ij} = 0 \end{cases}$$

Recurrent Multimodal Interaction for Referring Image Segmentation

ICCV 2017

Chenxi Liu¹ Zhe Lin² Xiaohui Shen² Jimei Yang² Xin Lu² Alan Yuille¹ Johns Hopkins University¹ Adobe Research²

{cxliu, alan.yuille}@jhu.edu {zlin, xshen, jimyang, xinl}@adobe.com

Segmentation from Natural Language Expressions:

- Remember all information → Find the matching region
- human: image-sentence-image reading sequence 来回浏览确定目标区域

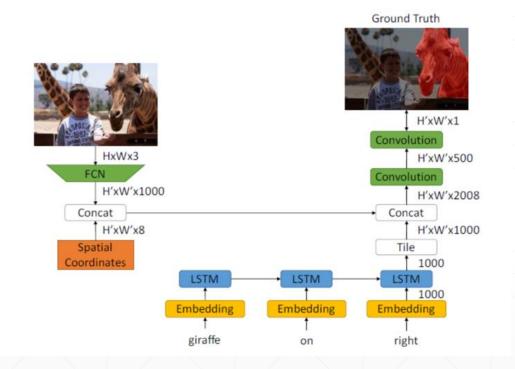
e.g. "The man on the right wearing blue."

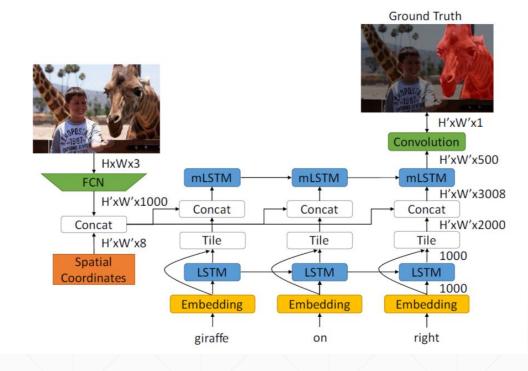
Step: 1.Find out pixels → "the man"

2.Delete pixels not "on the right"

3. Delete pixels **not** "wearing blue"

CNN+LSTM->RMI





$$\mathbf{l}_{t} \xrightarrow{LSTM} \mathbf{h}_{T} \xrightarrow{Concat} \begin{bmatrix} \mathbf{h}_{T} \\ \mathbf{v}^{ij} \end{bmatrix} \xrightarrow{Conv}$$
multimodal feature (8)

$$\mathbf{l}_t \xrightarrow{Concat} \begin{bmatrix} \mathbf{l}_t \\ \mathbf{v}^{ij} \end{bmatrix} \xrightarrow{mLSTM}$$
multimodal feature (9)

Experiments

	Google-Ref	val	UNC testA	testB	val	UNC+ testA	testB	ReferItGame test
[12, 13]	28.14	-	-	-	-	-	-	48.03
R+LSTM	28.60	38.74	39.18	39.01	26.25	26.95	24.57	54.01
R+RMI	32.06	39.74	39.99	40.44	27.85	28.69	26.65	54.55
R+LSTM+DCRF	28.94	39.88	40.44	40.07	26.29	27.03	24.44	55.90
R+RMI+DCRF	32.85	41.17	41.35	41.87	28.26	29.16	26.86	56.61
D+LSTM	33.08	43.27	43.60	43.31	28.42	28.57	27.70	56.83
D+RMI	34.40	44.33	44.74	44.63	29.91	30.37	29.43	57.34
D+LSTM+DCRF	33.11	43.97	44.25	44.07	28.07	28.29	27.44	58.20
D+RMI+DCRF	34.52	45.18	45.69	45.57	29.86	30.48	29.50	58.73

MAttNet: Modular Attention Network for Referring Expression Comprehension

Licheng Yu¹, Zhe Lin², Xiaohui Shen², Jimei Yang², Xin Lu², Mohit Bansal¹, Tamara L. Berg¹

¹University of North Carolina at Chapel Hill ²Adobe Research {licheng, tlberg, mbansal}@cs.unc.edu, {zlin, xshen, jimyang, xinl}@adobe.com

Target object: a red ball

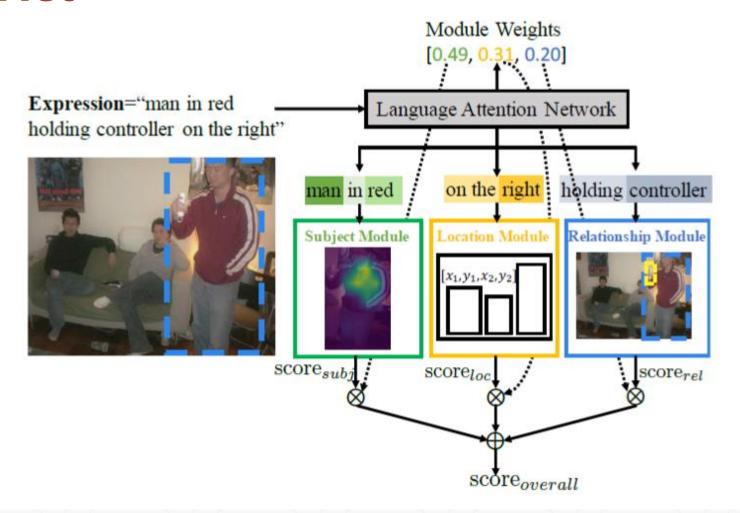
•a red ball among 10 black balls ←"the red ball" √

-a red ball is placed among 3 other red balls←"red ball on the right" ← location information

·a red ball is placed among 100 other red balls ← "red ball next to the cat" ← most distinguishing information

CVPR 2018

MAttNet



Language Attention Network

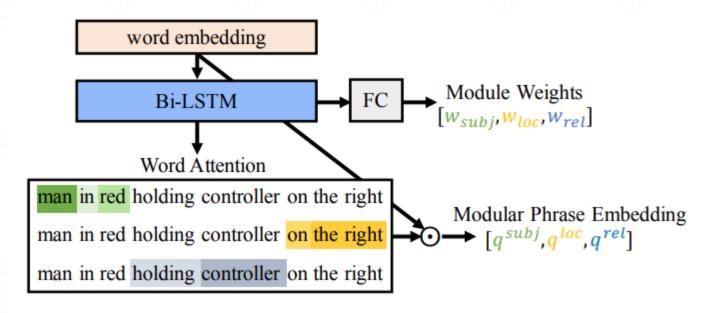


Figure 2: Language Attention Network

$$[w_{subj}, w_{loc}, w_{rel}] = \operatorname{softmax}(W_m^T[h_0, h_T] + b_m)$$

$$r = \{u_t\}_{t=1}^T,$$

$$e_t = \text{embedding}(u_t)$$

$$\vec{h}_t = \text{LSTM}(e_t, \vec{h}_{t-1})$$

$$h_t = \text{LSTM}(e_t, h_{t+1})$$

$$h_t = [\vec{h}_t, h_t].$$

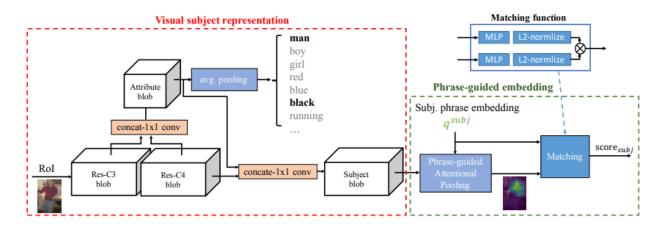
$$H = \{h_t\}_{t=1}^T,$$

$$m \in \{\text{subj, loc, rel}\}$$

$$a_{m,t} = \frac{\exp(f_m^T h_t)}{\sum_{k=1}^T \exp(f_m^T h_k)}$$

$$q^m = \sum_{t=1}^T a_{m,t} e_t.$$

Visual Modules



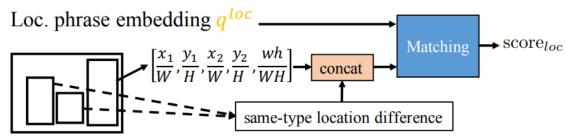


Figure 4: Location Module

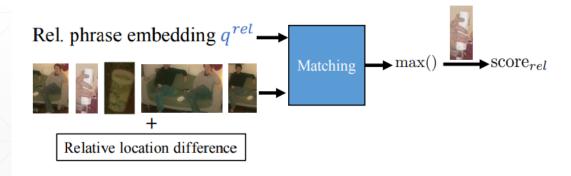
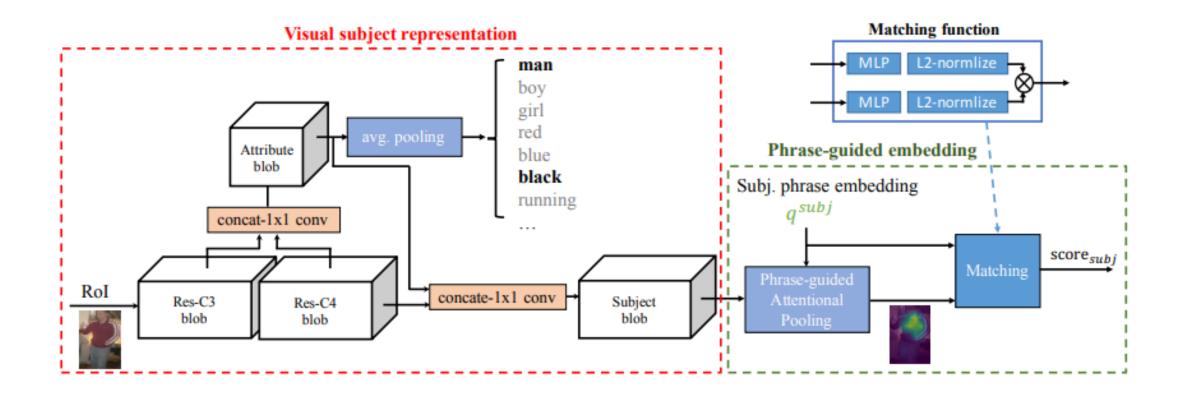


Figure 5: Relationship Module

$$S(o_i|q^{subj})$$
, $S(o_i|q^{loc})$ and $S(o_i|q^{rel})$.

Visual Modules--Subject Module

Attribute Prediction | Phrase-guided Attentional Pooling | Matching Function



Visual Modules--Location Module

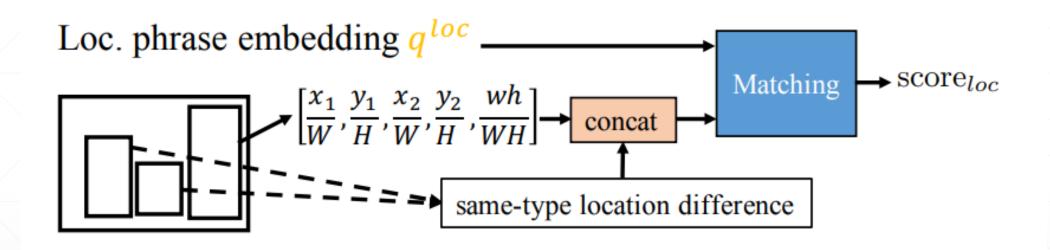


Figure 4: Location Module

Visual Modules--Relationship Module

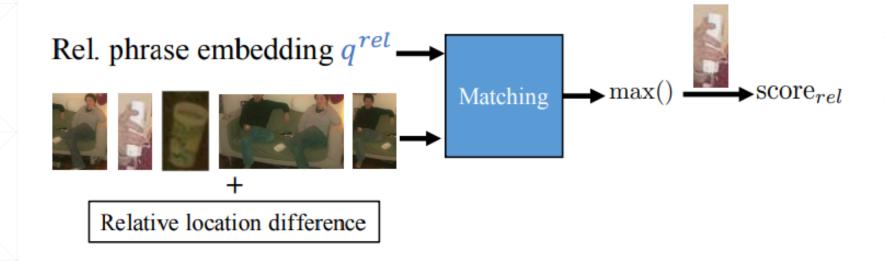


Figure 5: Relationship Module

$$\delta m_{ij} = \left[\frac{[\triangle x_{tl}]_{ij}}{w_i}, \frac{[\triangle y_{tl}]_{ij}}{h_i}, \frac{[\triangle x_{br}]_{ij}}{w_i}, \frac{[\triangle y_{br}]_{ij}}{h_i}, \frac{w_j h_j}{w_i h_i}\right].$$

$$\tilde{v}_{ij}^{rel} = W_r[v_{ij}; \delta m_{ij}] + b_r$$

Loss Function

$$S(o_i|r) = w_{subj}S(o_i|q^{subj}) + w_{loc}S(o_i|q^{loc}) + w_{rel}S(o_i|q^{rel})$$

$$L_{rank} = \sum_{i} [\lambda_1 \max(0, \Delta + S(o_i|r_j) - S(o_i|r_i))]$$

$$+\lambda_2 \max(0, \Delta + S(o_k|r_i) - S(o_i|r_i))]$$

$$L_{subj}^{attr} = \lambda_{attr} \sum_{i} \sum_{j} w_{j}^{attr} [\log(p_{ij}) + (1 - y_{ij}) \log(1 - p_{ij})]$$

$$L = L_{subj}^{attr} + L_{rank}.$$

Results: Referring Expression Comprehension

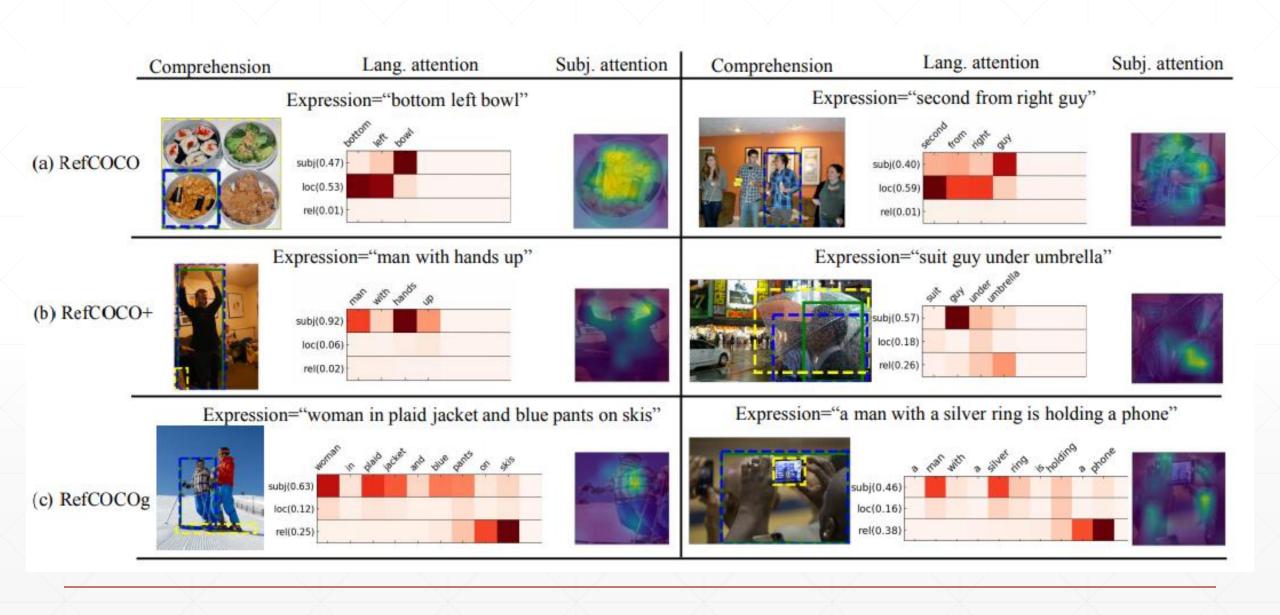
RefCOCO								
Model	Backbone Net	Split	Pr@0.5	Pr@0.6	Pr@0.7	Pr@0.8	Pr@0.9	IoU
D+RMI+DCRF [14]	res101-DeepLab	val	42.99	33.24	22.75	12.11	2.23	45.18
MAttNet	res101-mrcn	val	75.16	72.55	67.83	54.79	16.81	56.51
D+RMI+DCRF [14]	res101-DeepLab	testA	42.99	33.59	23.69	12.94	2.44	45.69
MAttNet	res101-mrcn	testA	79.55	77.60	72.53	59.01	13.79	62.37
D+RMI+DCRF [14]	res101-DeepLab	testB	44.99	32.21	22.69	11.84	2.65	45.57
MAttNet	res101-mrcn	testB	68.87	65.06	60.02	48.91	21.37	51.70

D CCCCC

RefCOCO+								
Model	Backbone Net	Split	Pr@0.5	Pr@0.6	Pr@0.7	Pr@0.8	Pr@0.9	IoU
D+RMI+DCRF [14]	res101-DeepLab	val	20.52	14.02	8.46	3.77	0.62	29.86
MAttNet	res101-mrcn	val	64.11	61.87	58.06	47.42	14.16	46.67
D+RMI+DCRF [14]	res101-DeepLab	testA	21.22	14.43	8.99	3.91	0.49	30.48
MAttNet	res101-mrcn	testA	70.12	68.48	63.97	52.13	12.28	52.39
D+RMI+DCRF [14]	res101-DeepLab	testB	20.78	14.56	8.80	4.58	0.80	29.50
MAttNet	res101-mrcn	testB	54.82	51.73	47.27	38.58	17.00	40.08

RefCOCOg									
Model	Backbone Net	Split	Pr@0.5	Pr@0.6	Pr@0.7	Pr@0.8	Pr@0.9	IoU	
MAttNet	res101-mrcn	val	64.48	61.52	56.50	43.97	14.67	47.64	
MAttNet	res101-mrcn	test	65.60	62.92	57.31	44.44	12.55	48.61	

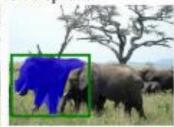
Table 4: Comparison of segmentation performance on RefCOCO, RefCOCO+, and our results on RefCOCOg.



Expression="right kid"

Expression="left elephant"





(a) RefCOCO

Expression="woman with short red hair"

Expression="brown and white horse"

Expression="a woman with full black tops"

(b) RefCOCO+

Expression="the tennis player in red shirt"

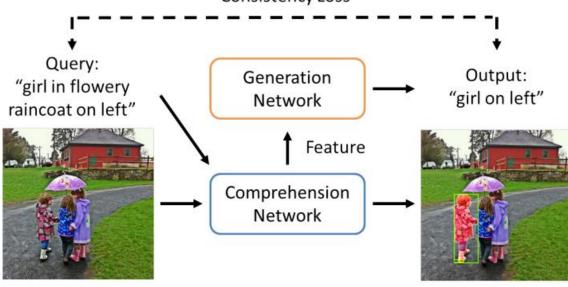
(c) RefCOCOg

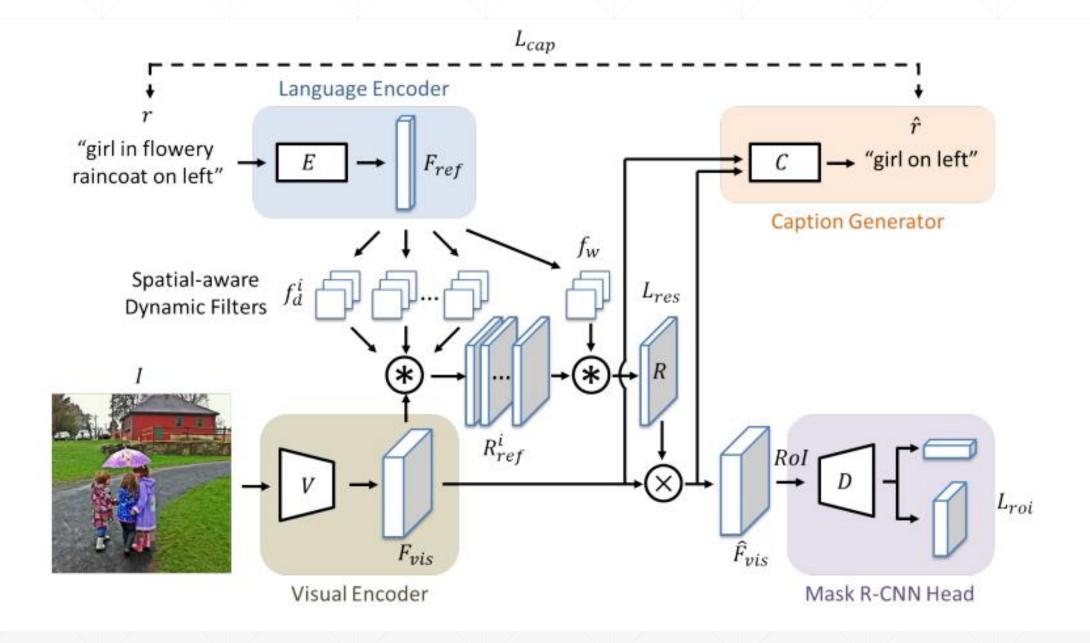
4 Referring Expression Object Segmentation BMVC 2019 with Caption-Aware Consistency

Yi-Wen Chen¹
chenyiwena@gmail.com
Yi-Hsuan Tsai²
ytsai@nec-labs.com
Tiantian Wang³
tiantianwang.ice@gmail.com
Yen-Yu Lin¹
yylin@citi.sinica.edu.tw
Ming-Hsuan Yang³4
mhyang@ucmerced.edu

Academia Sinica
 NEC Laboratories America
 University of California, Merced
 Google Cloud

 Consistency Loss





Segmentation from Referring Expression

Language Encoder

Matt bi-directional LSTM

$$\overrightarrow{h}_{t} = \overrightarrow{S}(e_{t}, \overrightarrow{h}_{t-1})$$

$$\overleftarrow{h}_{t} = \overleftarrow{S}(e_{t}, \overleftarrow{h}_{t+1})$$

$$F_{ref} = [\overrightarrow{h}_{T}, \overleftarrow{h}_{1}],$$

Visual Encoder

proposal-based Mask R-CNN、ResNet-101

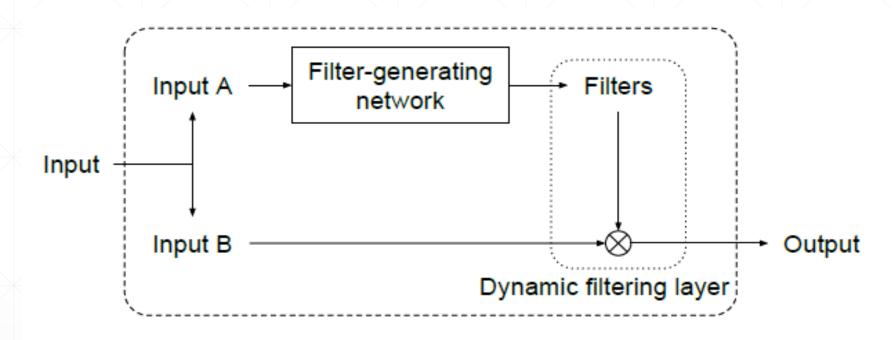
$$F_{vis} = V(I)$$

- Spatial-aware Dynamic Filters
- Baseline Objective

$$L = L_{roi} + L_{res}$$

Dynamic Filter Network

Filter←→Kernel

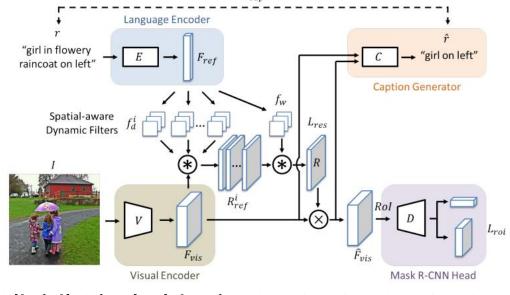


- 1. **模型参数(model parameters):** 模型参数表示只在训练过程中被更新,在预先被初始化的层参数,对于所有的样本都是相同的.
- 2. **动态产生参数(dynamically generated parameters)**:是由样本所决定的,是动态生成的,不需要初始化. filter-generating 网络输出动态产生参数,同时该网络还是有一部分的**模型参数**.

Spatial-aware Dynamic Filter

$$f_d^1 = \tanh(W_d^1 \cdot F_{ref} + b_d^1), \qquad R_{ref}^1 = f_d^1 * F_{vis}.$$

$$R_{ref}^1 = f_d^1 * F_{vis}.$$



- Consider the entire image/only be able to catch the global structure but ignore spatially distributed objects
- >spatial-aware dynamic filters: including up,down,left,right,horizontal and vertical middle regions ← six additional fully connected layers

$$\{f_d^i\}_{i=2}^7 \qquad \{R_{ref}^i\}_{i=2}^7,$$

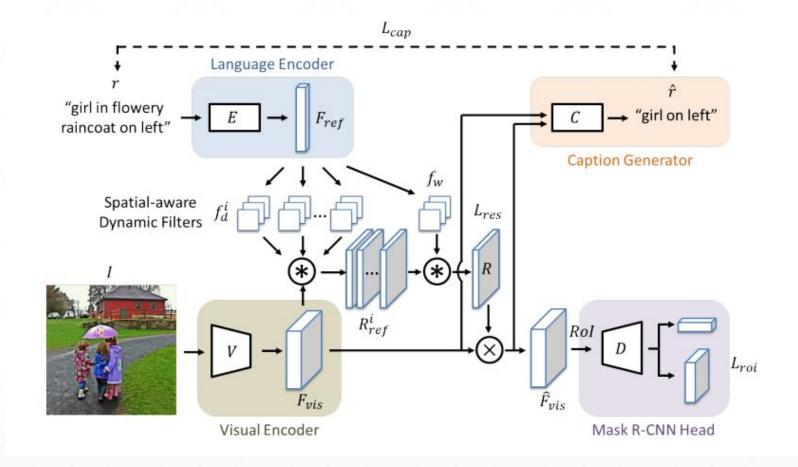
$$R_{con} = \operatorname{concat}(R_{ref}^i)$$
 $R = \sigma(f_w * R_{con}),$

$$R = \sigma(f_w * R_{con}),$$

Loss:binary cross-entropy loss Lres → R & ground-truth object mask

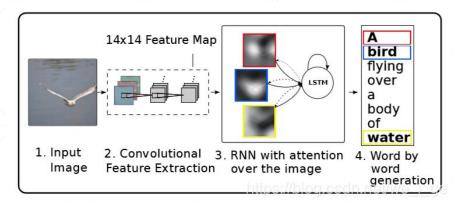
Loss

$$L = L_{roi} + L_{res}$$
,



- Lroi include: classification loss, bounding box loss, mask loss(defined in Mask R-CNN)
- Lres (in Spatial-aware Dynamic Filter)

A Joint Framework



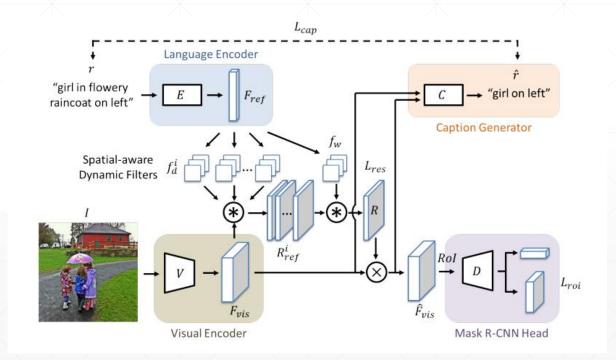
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention[23]

Caption-aware Consistency

$$L_{cap} = -\sum_{t=1}^{T} \log(p_{\theta_c}(w_t|w_1, ..., w_{t-1})),$$

Overall Objective

$$L = L_{roi} + L_{res} + \alpha L_{cap},$$



location

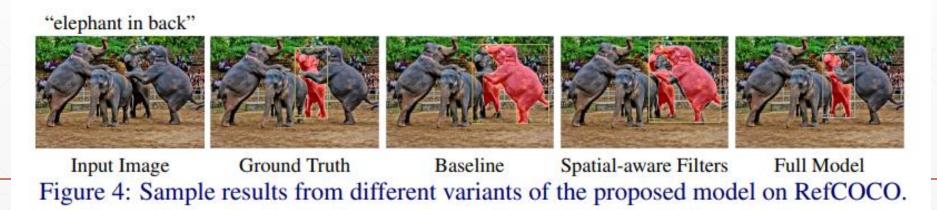
		RefCOCO			RefCOCOg		
Model	Info.	val	testA	testB	val*	val	test
Nagaraja et al. [[]]	С	57.30	58.60	56.40	-	-	49.50
Luo et al. [4]	J	-	67.94	55.18	49.07	-	-
Liu et al. 🔼	Attr, J	-	72.08	57.29	52.35	-	_
Yu et al. [🛂]	J	-	73.78	63.83	59.84	-	_
MAttNet [76]	Attr, Attn, L, R	76.65	81.14	69.99	-	66.58	67.27
VC [🔼]	C	-	73.33	67.44	62.30	-	-
baseline	-	72.65	76.65	65.75	54.18	58.09	58.32
+ spatial coords [□]	L	75.89	78.57	68.54	61.37	64.10	64.21
+ spatial-aware filters	L	76.98	79.30	69.75	61.65	65.18	65.28
+ caption-aware consistency	J	76.05	78.84	69.36	60.69	64.71	63.79
full model	L, J	77.08	80.34	70.62	62.34	65.83	65.44

segmentation

Table 2: Segmentation results of our method and the competing methods on two datasets.

		I	RefCOCO			RefCOCOg		
Model	Backbone Net	val	testA	testB	val*	val	test	
D+RMI+DCRF [[Deeplab101	45.18	45.69	45.57	-	-	-	
RRN+LSTM+DCRF [1]	Deeplab101	55.33	57.26	53.95	36.45	-	-	
MAttNet [26]	Res101	56.51	62.37	51.70	-	47.64	48.61	
KWAN [20]	Deeplab101	-	-	-	36.92	-	-	
DMN [15]	DPN92	49.78	54.83	45.13	36.76	-	-	
Ours	Res101	58.90	61.77	53.81	44.32	46.37	46.95	

Figure 3: Sample results of objects referred by various query expressions.

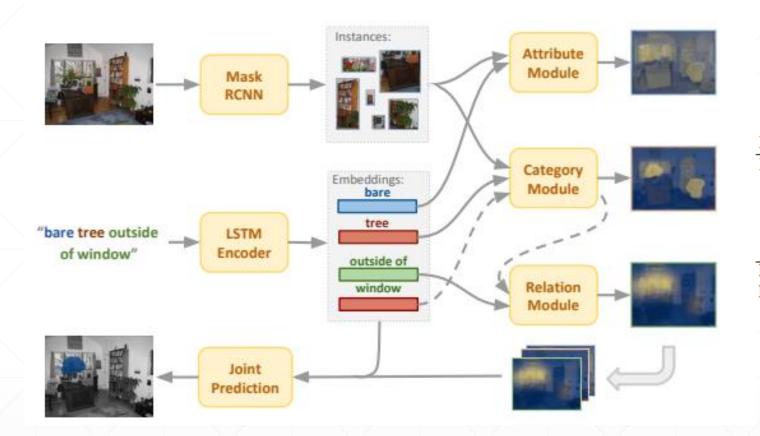


Chenyun Wu¹ Zhe Lin² Scott Cohen² Trung Bui² Subhransu Maji¹

¹University of Massachusetts Amherst ²Adobe Research

{chenyun, smaji}@cs.umass.edu, {zlin, scohen, bui}@adobe.com

Figure 2. Example annotations from the VGPHRASECUT dataset. Colors (blue, red, green) of the input phrases correspond to words that indicate attributes, categories, and relationships respectively.



Model	mean-IoU	cum-IoU	Pr@0.5	Pr@0.7	Pr@0.9
HULANet					
cat	39.9	48.8	40.8	25.9	5.5
cat+att	41.3	50.8	42.9	27.8	5.9
cat+rel	41.1	49.9	42.3	26.6	5.6
cat+att+rel	41.3	50.2	42.4	27.0	5.7
RMI	21.1	42.5	22.0	11.6	1.5
MattNet	20.2	22.7	19.7	13.5	3.0

- a modular approach for combining visual cues related to categories, attributes, and relationships
- a systematic approach to improving the performance on rare categories and attributes by leveraging predictions on more frequent ones

Figure 6. **Prediction results on VGPHRASECUT dataset.** Rows from top to down are: (1) input image; (2) ground-truth segmentation and instance boxes; (3) MattNet baseline; (4) RMI baseline; (5) HULANet (cat + att + rel). See more results in the supplemental material.

Review

- Dataset
- Segmentation from Natural Language Expressions
- Recurrent Multimodal Interaction for Referring Image Segmentation
- MAttNet: Modular Attention Network for Referring Expression Comprehension
- Referring Expression Object Segmentation with Caption-Aware Consistency
- PhraseCut: Language-Based Image Segmentation in the Wild

Thank you